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Abstract: (-)-8-Norethyl, l'-normethyl Etodolac (-)-7 was synthesized in ¢¢ up to 95% from a 
Frie,,dcI-Cratts alkylation reaction between tryptophol 4 and the chiral I~-ketobutyrat¢ 5h, followed 
by hydrolysis. © 1997 Elsevier Science Ltd. 

Friedel-Crafis and related reactions allow the formation of  C-C bonds from carbenium ions or 

equivalent species and aromatic or unsaturated aliphatic compounds. ~ Although they have been extensively 

employed in organic synthesis, z the stereoselectivity in these reactions have been less adressed. 3 Only a few 

examples of asynunctric Friedel-Crafis reaction have be~n reported in the literature using either pro-chiral 

electrophiles in the presence of covalently bonded chiral auxiliaries 4's or pro-chiral electrophiles in the 
6 

presence of chiral Lewis acids. Two cases of enantiospecific Friedel-CraRs reaction have also recently 

been reported.7 

Etodolac 3, a non steroidal antiinflamatory agent used in clinical treatment, was prepared 8 by a 

Friedel-Cratts alkylation reaction between 7-ethyltryptophol 1 and the 13-ketoester 2, followed by hydrolysis 

(scheme 1). The (+)-(S)-3 enantiomer, obtained by chemical resolution, proved to be 2.6 times more active 

than the racemate. 9 

i, 
H OMe 0 0 

/ 1 BF3EI20 H 
in THF, ft. 

ii,KOH, MeOH, H 20; iii, (-)-Bomeol, DCC, DMAP 

iv, Pmpararive HPLC, then KOH, MeOH, H2 O 

Scheme 1 : Preparation of (+)-(S)-Etodolac 

Recently we described ~° an enantioselective synthesis of the Etodolac core based on the racemic 

synthesis previously described by Humber (Scheme 2, entries 1-3). Etodolac analog, 8-norethyl, l '- 

normethyl Etodolac (-)-7 was prepared in modest de by reaction of chiral 13-ketobutyrates 5a or 5b with 

tryptophol 4 ,  followed by hydrolysis of the resulting ester 6a or 6b. The 13-ketobutyrates 5a and 5b were 

prepareA through acetoacetylation of chiral auxiliaries anti-9a and anti-9e, previously synthesised from 
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(IS)-(-)-fl-pinene 8. H The comparison of entries 1-3 shows that the de of ester 6 increase with the size of 

the aromatic appendage attached to the pinane moiety. 

In this paper we describe the results obtained when the new chiral auxiliaries anti-lOa, anti-lOe, 
syn-I la and ~yn-llc-e, also prepared from 8,12 were used in the enantioselective synthesis of (-)-7 (scheme 

2, entries 4-15). 

H D 6 OR* 8 an t i -9  
4 BF3Et20 or SnCl 4 

in THF' rt' 60"80% 1 ~ ~ ' r  ~ O H ' A r  
5 and 6 KOH, MeOH, H20, 
a, R*  = 9a  reflux, 90-96% 
b, R*  = 9b a n t i - 1 0  syn-11  
c, R*  = anti-10a 
d, R* = syn-1 la ~ - ' ~  0 a, Ar = Ph 
e, R* = syn-1 lc b, Ar = 9-antranyl 
f, R* = syn-1 ld ~ c, Ar = 1 -naphthyl 

d, Ar = o-MeOPh 
g,R* = anti-10e OH e, Ar  = p-MeOPh 
h, R* = syn-1 le (-)-7 

Entry 6 R* L.A, % 6 %de [aJn 7 

1 a 9a  BF3 87 10 

2 b 9b BF3 81 40 -8.54 

3 b 9b SnCI4 70 36 

4 c 10a BF3 68 0 

5 c 10a SnCI4 61 0 

6 d l l a  BF3 58 73 

7 d l l a  SnCI4 57 84 -18.0 

8 e 11¢ BF3 85 10 

9 e 1 le SnC14 73 0 

10 f l i d  BF3 80 0 

11 f 1 ld SnCI4 78 24 

12 g 10e BF3 61 0 

13 g 10e SnC14 59 0 

14 h l i e  BF3 65 0 

i5 h l i e  SnCI4 59 >95 -20.2 

Scheme 2: Enantioselective Synthesis of (-)-7 Mediated by Chiral Auxiliaries Derived From 

(-)-13-Pinene 

As shown in entries 4 and 5, the use of chirai 13-ketobutyrate 5¢ led to ester 6c as a equimolecular 

mixture of epimers at the newly created quaternary asymmetric center, regardless of the Lewis acid 

employed as catalyst. On the other hand, the reactions involving syn-l la  ([~-ketoester 5d) led to 6d in 

good de (entries 6 and 7). In order to improve this diastereoselectivity, the auxiliary syn-11¢ (13- 
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ketobutyrate 5e), bearing a more bulky aromatic appendage, was studied. In contrast to the previously 

observed for 9 (entries 1-3), the reactions mediated by syn-I lb  led to disapointing de (entries 8 and 9). 
Finally we studied the chiral auxiliaries syn-I l d-e and ant/-10e, having a methoxy substituent on the 

aromatic appendage (entries 10-15). We speculated that chelated transition states would be originated, 
involving the metal, the carbonyl groups in the l[3-ketoester moiety and the mcthoxy group at the aromatic 
ring of the chiral auxifiar moiety allowing a better x-facial discrimination of the keto group. When syn-lld 
and anti-lOe (13-ketobutyrates 5f and 5g) were used in the synthesis of  6, disappointing results were 
obtained regardless of the Lewis acid employed (entries 10-13). However, for syn-lle the de was very 
dependent on the Lewis acid employed. While a mixture of equimolecular of  epimers of 6h were formed 
when BF3 Et20 was used as catalyst, a de of up to 95% was obtained when the Lewis acid employed was 
SnCI4. ~3 Removal of the chiral auxiliary by saponification gave (-)-7 (ee up to 95%) and recovered syn- 
11.14 

In conclusion, our results allow the synthesis of the Etodolac core, in excellent enantiomeric excess 

using the readily prepared chiral auxiliaries syn-I la  and syn-I le, derived from (1S)-(-)-13-pinene (8). Since 
15 

(IR)-(+)-13-pinene is available from isomerization of (1g)-(+)-c~-pinene, the enantiomers of syn-l la and 

syn-lle can be easily prepared, allowing the enantiosdcctive synthesis of  (+)-7. Work is in progress to 

determine the absolute configuration of (-)-7. The use of this strategy to prepare (+)-(S)-Etodolac (3) is 

also under investigation. 
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